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SEAL: Towards Safe Autonomous Driving via Skill-Enabled

Adversary Learning for Closed-Loop Scenario Generation
Benjamin Stoler1 Ingrid Navarro1 Jonathan Francis1,2 Jean Oh1

Abstract—Verification and validation of autonomous driving
(AD) systems and components is of increasing importance, as
such technology increases in real-world prevalence. Safety-critical
scenario generation is a key approach to robustify AD poli-
cies through closed-loop training. However, existing approaches
for scenario generation rely on simplistic objectives, resulting
in overly-aggressive or non-reactive adversarial behaviors. To
generate diverse adversarial yet realistic scenarios, we propose
SEAL, a scenario perturbation approach that leverages learned
objective functions and adversarial, human-like skills. SEAL-
perturbed scenarios are more realistic than SOTA baselines,
leading to improved ego task success across real-world, in-
distribution, and out-of-distribution scenarios, of more than 20%.
To facilitate future research, we release our code and tools:
https://navars.xyz/seal/

Index Terms—Intelligent Transportation Systems, Autonomous
Vehicle Navigation, Performance Evaluation and Benchmarking

I. INTRODUCTION

W ITH the growing deployment of autonomous driving
(AD) technologies in real-world settings, ensuring the

safety of such systems has only increased in importance and
public concern [3], [4]. As AD verification and validation
approaches continue to evolve, scenario-based testing via
datasets and simulation has emerged as a core methodology,
where alternatives such as on-road testing via a sufficiently
large number of miles driven can be prohibitively expensive,
risky, and infeasible [5], [6]. While validation of system
behavior under normal operating circumstances is valuable,
testing AD behavior under safety-critical and other corner-case
circumstances is vital for Safety of the Intended Functionality
(SOTIF) standards [7]–[9].

Scenarios are often curated in the form of large datasets
of real-world recorded driving traces, providing a basis for
assessing human behaviors and for training machine learning
models [10]–[12]. AD subsystems are then asked to perform
tasks such as forecasting the future motion of various road
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users or controlling the behavior of certain vehicles in a
simulated reconstruction [13]–[16]. However, the presence of
critical scenarios in collected datasets is exceedingly low,
a problem identified as the “curse-of-rarity” in autonomous
driving [17]–[19]. Thus, programmatically generating safety-
critical scenarios is necessary. To ensure that generated sce-
narios retain realistic properties, it is appealing to perturb the
behavior of one or more agents in a principled way, rather than
using first principles to painstakingly assemble a scenario from
scratch [1], [20]–[22]. In this setting, one agent is referred
to as the ego agent, while the modified background traffic
participants are adversary agent(s), who attempt to attack the
ego in some way.

State-of-the-art (SOTA) approaches in perturbation-based
scenario generation have coupled a dynamic scenario gen-
eration framework with an ego control policy being trained
with closed-loop objectives [1], [23], [24], in contrast with
previous less-efficient staged approaches [25], [26]. These
approaches can still be sub-optimal, however, in that they can
struggle to provide useful training stimuli to a closed-loop
agent. In particular, we identify three key issues in recent
SOTAs: 1) they have a limited view of safety-criticality, e.g.,
focusing only on inducing collisions or near-misses; 2) they
lack reactivity to an ego agent’s behavior diversity; and 3)
their optimization objectives tend to maximize “unrealistic”
and overly-aggressive adversarial behavior, limiting their use-
fulness for balanced model training.

Therefore, in this paper, we propose and evaluate a method
for Skill-Enabled Adversary Learning (SEAL), which yields
significantly improved downstream ego behavior, in closed-
loop training with safety-critical scenario generation. Our
method addresses the identified limitations in prior art by
introducing two novel components, as shown in Figure 1. First,
we introduce a learned objective function to anticipate how
a reactive ego agent will respond to a candidate adversarial
agent behavior. We quantify both collision closeness and
induced ego behavior deviation, thus providing a broadened
understanding of safety criticality. Second, we develop a skill-
enabled, reactive adversary policy; in particular, inspired by
human cognition, we leverage a hierarchical framework that
is akin to how humans operate vehicles [27] and we create
an adversarial prior that selects human-like skill primitives to
increase criticality while maintaining realism.

Furthermore, we argue that safety-critical scenario gen-
eration should be evaluated based on behavior realism and
usefulness for ego policy improvement, not just induced crit-
icality. Prior work often assesses ego policies on generated
scenarios where safety-critical behavior remains effectively
in-distribution with respect to training data and heuristic

https://navars.xyz/seal/
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Fig. 1: An overview of SEAL. Our scenario generation approach leverages a learned objective function and an adversarial
skill-based, reactive policy, for improved adversary realism and more effective closed-loop training, leading to safer autonomous
driving agents, compared to previous approaches such as CAT [1] and GOOSE [2].

perturbations [1], [28]. To address this, we build on recent
scenario characterization work, SafeShift [18], to identify real
(non-generated) but safety-relevant scenarios, enabling a more
realistic, out-of-distribution evaluation. While in-distribution
performance is informative, real-world performance on chal-
lenging scenarios is ultimately most important.

In summary, our paper comprises three main contributions:
1) We propose two novel techniques for safety-critical per-

turbation: (i) a learned objective function to select can-
didate trajectories; and (ii) an adversarial skill-based,
reactive policy for more realism in adversary behavior.

2) We design an improved evaluation setting for closed-loop
training, utilizing real-world safety-relevant scenarios in
contrast to just in-distribution generated scenarios.

3) We provide results on several key experiments, showing
an increase of more than 20% in ego task success rate
over SOTA baselines, across scenarios generated closed-
loop by our proposed framework, across scenarios gener-
ated closed-loop by previous SOTA baseline frameworks,
and across real-world safety-relevant scenarios.

II. RELATED WORK

A. Scenario Generation in Autonomous Driving

Approaches for generating scenarios that reproduce the
distribution of normal driving behavior have been extensively
explored. Some methods ensure the diversity of generated
traffic behavior [29], [30], while others aim for controllability
through rule-based or language-driven specifications [31]–
[33]. However, due to the rarity of safety-critical events
in recorded data [17]–[19], other approaches have focused
on directly generating corner-case scenarios by injecting ad-
versarial behaviors. Earlier works in safety-critical scenario
generation relied on gradient-based optimization approaches
with access to vehicle dynamics [25], [28], [34], a limitation
in model-free settings. Other methods, such as diffusion-based
approaches [26], [35], are compute-intensive and impractical
to be used in a closed-loop manner. Efficient methods like

CAT [1] and GOOSE [2], which leverage trajectory prediction
priors and reinforcement learning (RL) respectively, prioritize
simple collision objectives and are non-reactive to the ego
agent. Similarly, [36] employs reactive adversaries but fo-
cuses only on collisions for criticality and defines realism via
proximity to ground-truth trajectories, making it sensitive to
distribution shifts. In contrast, our approach efficiently gen-
erates reactive, nuanced adversarial behavior across multiple
axes of criticality, providing a stronger closed-loop training
signal.

B. Robust Training and Evaluation in Autonomous Driving

Several techniques for robustifying AD policies against
safety-critical and out-of-distribution scenarios have been
explored. Formal methods, such as Hamilton-Jacobi (HJ)
reachability, have been utilized in various driving tasks, but
struggle with dimension scaling [37], [38]. Similarly, domain
randomization has been used as a form of data augmentation
(e.g., randomizing vehicle control parameters [39] or scenario
initial states [40]) but requires excessive sampling to cover a
sufficient domain size. Thus, adaptive stress testing [17], [41]
and adversarial training have been increasingly used, either
as a fine-tuning scheme [25], [26] or in a fully closed-loop
training pipeline [1], [34], providing continuous feedback to
an ego agent. However, these approaches still tend to optimize
for naive collision objectives alone.

Evaluation of robust training and scenario generation ap-
proaches is crucial. Many works evaluate generated scenarios
against fixed rule-based or replay ego planners alone [2], [14],
[25], [35], [42], offering limited insights into the efficacy
of adversarial agents against more sophisticated ego agents.
Additionally, adversarially-trained ego policies are often tested
on scenarios perturbed by the same adversarial method used
in training [1], [26], [28], [34], leading to in-distribution
evaluations. Conversely, we focus on out-of-distribution evalu-
ation of well-trained, reactive ego policies, in both adversarial



STOLER et al.: SEAL: TOWARDS SAFE AUTONOMOUS DRIVING VIA SKILL-ENABLED ADVERSARY LEARNING 3

scenarios perturbed by other SOTA approaches, as well as real
safety-relevant scenarios.

Out-of-distribution evaluation has been well-explored in
AD trajectory prediction [16], [18], [43], [44], but these
approaches often aim to characterize an entire scenario without
focusing on a single ego driver or identifying a specific adver-
sary. In AD control tasks, some prior work has explored out-
of-distribution settings, such as CARNOVEL [45], [46], which
tests unseen scenario types like roundabouts. Additionally, Lu
et al. [47] evaluate across real-world scenarios of various
difficulty levels, but do not hold out the hardest scenarios
during training. Our approach thus addresses this gap by
offering a more comprehensive and rigorous evaluation, across
a wide set of adversarial and real-world scenarios.

III. PRELIMINARIES

In this section, we define relevant notation and task defini-
tions used in the rest of this paper. Let (x, y)(t) represent the
location of an agent (i.e., vehicle, pedestrian, or cyclist) in the
ground plane at some given time t. We then define an agent’s
trajectory as the ordered set X = ((x , y)(t) | t ∈ {1, 2, ..., T})
over T timesteps at some fixed time delta.
Base Scenario: We define a base scenario, S, as the tuple
(X, M, ego, adv), with X = {Xi | i ∈ {1, 2, ..., N}}
consisting of the set of all agent trajectories observed, where
Xi denotes the trajectory of an agent with the ID of i, and N is
the total number of agents. All relevant map and scenario meta
information (such as lane connectivity, traffic light locations,
etc.) is given as M. Finally, ego and adv refer respectively
to the agent IDs of the ego vehicle (to be controlled in
simulation) and the adversarial vehicle (to be perturbed to
induce criticality).
Scenario Perturbation Task: For this task, K re-simulations
of a base scenario S are performed as episodes, where agents
start from the same state as the base scenario and follow a be-
havior prescribed by some policy (i.e., a reactive policy or pre-
defined trajectory), which may be different than their original
trajectory. Let X̃(k) represent the observed trajectories in the
k-th re-simulation of S. The perturbation-based safety critical
scenario generation task is thus assigning behaviors to roll-out
for all non-ego agents, conditioned on the base scenario S and
K previous episodes, {X̃(k) | k ∈ {1, 2, ...,K}}, such that the
resulting X̃(K+1) satisfies some specified desired properties of
criticality. Importantly, we treat the ego agent’s behavior as a
black box: while we are able to observe previous behavior
as X̃K

ego, we have no access to the model or any privileged
information on ego’s decision-making process. In practice,
during training, we maintain a queue of the most recent K per-
turbation roll-outs for each base scenario; during evaluation,
we instead run K sequential perturbation–simulation steps and
use the final roll-out as the adversarial scenario.

IV. APPROACH: SKILL-ENABLED ADVERSARY LEARNING
FOR SCENARIO GENERATION

To increase scenario criticality while preserving realism,
we propose the Skill-Enabled Adversary Learning (SEAL)
approach for perturbation-based scenario generation. Similar

Fig. 2: Skill space visualized with t-SNE [48]. Benign and
adversarial priors map to several regions representing useful,
human-like skills, with meaningful separation and overlap.

to CAT [1], SEAL employs a probabilistic trajectory predic-
tor πgen to sample candidate adversary futures conditioned
on S. However, directly executing these samples has three
main limitations: 1) it measures criticality only via collisions,
ignoring, e.g., forced ego hard braking or swerving; 2) it
prevents reactivity to ego decisions; and 3) it often generates
non-human-like behavior, driving straight at the ego with no
avoidance. SEAL addresses these with a learned objective for
flexible trajectory selection and an adversarial skill policy for
more human-like and reactive behavior.

A. Learned Objective Function

Many previous works rely on heuristic approaches to select
the best trajectory from a candidate set to be assigned to
the behavior of the adversary agent, X̃

(K+1)
adv . For instance,

CAT [1] compares bounding box overlaps across the previous
K episodes in all candidate routes, selecting the one which
collides with the most previous ego roll-outs at the earliest
time step or is closest to a collision, otherwise. We instead aim
to select among candidate trajectories in a more flexible way
that captures both closeness to collision as well as likelihood
of anticipated ego behavior deviation (e.g., causing the ego to
swerve or execute a hard-brake maneuver).

We frame the problem as a supervised regression task. First,
we build a dataset of simulated outcomes, where we roll out
and observe all trajectory pairs of ego and adversarial agents,
(X̃(K+1)

ego , X̃(K+1)
adv ). To keep ego behavior as a black-box in

downstream closed-loop training, we have the ego follow a
reactive heuristic policy during this stage. We then obtain
ground truth values from the collected demonstrations, using
the following scoring functions, similar to measure functions
used in prior work [18], [21]:

fcoll = exp
(
−1

b
min
t

∣∣∣∣∣∣X̃(k),t
ego − X̃

(k),t
adv

∣∣∣∣∣∣
2

)
(1)

fdiff = 1− exp

(
−1

b

∑
t

∣∣∣∣∣∣X̃(k−1),t
ego − X̃(k),t

ego

∣∣∣∣∣∣
2

)
, (2)

where b ∈ R is a hyperparameter controlling sensitivity to
distance values. Both Equation (1) and Equation (2) map to
[0, 1], where 1 indicates maximal criticality and 0 indicates
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minimal. Equation (1) captures collision closeness between
the ego and adversary over a given roll-out, while Equation (2)
captures ego behavior difference between two episodes. How-
ever, instead of only assessing past episodes, we propose to
predict these measures for a roll-out yet to happen by training
a neural network, πscore (detailed in Section IV-C). This πscore
network aims to predict fcoll and fdiff conditioned on a previous
X̃

(k)
ego and the proposed X̃

(K+1)
adv . The final score for ranking

candidate trajectories is the sum of the predicted fcoll and fdiff
values from πscore, averaged over the K previous ego roll-
outs.By using πscore in place of additional heuristic simulation,
we enable scoring to be conditioned on actual ego policy roll-
outs and substantially reduce runtime overhead.

B. Adversarial Skill Learning
We design a reactive policy πadv, to guide the adversary’s

behavior, unlike recent works [1], [2], where the selected
adversary follows a predefined trajectory. This adversarial
policy observes and acts in a closed-loop simulator alongside
the ego policy. In this context, skill-based hierarchical policies
are appealing approaches as they capture maneuvers at a
higher abstraction, compared to the low-level actions of a
simulator, corresponding more closely to how humans operate
vehicles [27].

We build upon prior work, ReSkill [49], which utilizes
expert demonstrations to extract paired observation and action
sequences as state-conditioned “skills” which are then embed-
ded using a Variational AutoEncoder (VAE). Additionally, a
state-conditioned prior network is trained to map from a state
to a useful location in the VAE’s latent space to be decoded
into a reconstructed skill for the agent to follow.

In our work, we separate the demonstrated skills into adver-
sarial (i.e., those ending in a collision or near-miss) and benign
skills (i.e., those avoiding a collision while staying on road).
We use a sliding-window partitioning scheme that excludes
segments starting within twice the skill horizon before an out-
of-road event, and labels as adversarial those within the same
window before a collision. This reflects the intuition that not
only the final skill but also preceding behavior contributes
to unsafe outcomes. We then train two prior networks in
parallel with a shared-skill VAE: benign skills flow through
a “benign” prior while adversarial skills flow through an
analogous “adversarial” prior. In this way, the adversarial
agent policy, πadv, leverages the adversarial prior to select
skills likely to lead to safety-critical outcomes. Furthermore,
because each prior is implemented as a real-valued non-
volume preserving transformation trained on observed data
(as in ReSkill), sampled noise vectors bijectively correspond
to plausible, in-distribution behaviors. Figure 2 visualizes the
learned skill spaces over uniformly sampled states; regions
of overlap correspond to skills which may be useful to both
an adversarial and benign agent (e.g., lane-keeping, smooth
kinematics, etc.) while distinct regions correspond to skills
only useful for that particular agent (e.g., for an adversary:
cutting-off another vehicle, hard-braking in a dangerous way,
etc.).

To integrate this skill module with the trajectory genera-
tion and ranking discussed in Section IV-A, we first select

the highest ranking candidate trajectory, X̃(K+1)
adv . We derive

goals and subgoals from this selected trajectory to provide to
πadv as navigation information. Skills are then executed in a
hierarchical manner as in [49]: at the start of the episode or
when a skill has completed, a new skill is selected based on
the current observation and adversarial prior. The agent then
decodes that skill, in a closed-loop manner, into raw actions.
To further increase safety-criticality, the adversary initially
exactly follows X̃

(K+1)
adv before switching to this adversarial

skill policy at a fixed offset before the anticipated point of
maximal collision risk.

C. SEAL Implementation Details

For training and validating both the learned objective func-
tion and skill spaces, we leverage the well-established Waymo
Open Motion Dataset (WOMD) [10] dataset, as well as a
subset of scenarios therein labeled by Waymo as containing
interacting agents. A further subset of 500 of these scenarios
has been used by prior work, and we henceforth refer to this
set as WOMD-Normal [1], [50]. We split these scenarios into
400 training and 100 evaluation examples.

For πgen, we utilize a pre-trained DenseTNT [13] trajectory
prediction model, as used by CAT. πgen takes as input the
first one second of X, as well as the static meta information
M, and produces 32 candidate eight-second future adversary
paths. We use the MetaDrive simulator [51] and its included
IDM policy [52] as the heuristic reactive agent to collect
imperfect demonstration data, described and utilized in both
Section IV-A and Section IV-B. For data augmentation, all
agents in the scenario follow the IDM policy and produce
useful demonstrations, rather than collecting examples from
solely the ego. We extract subgoals from each trajectory using
MetaDrive’s default waypoint logic, placing checkpoints every
8 meters as navigation input for πadv.

We implement πscore as a VectorNet-style polyline en-
coder [53], followed by a multilayer perceptron decoder to
the predicted values of fcoll and fdiff. We use an MSE loss
objective on the sum of the two values, ensuring equal weight
to both predicted measures. For πadv, we leverage the skill
embedding framework from [49], with identical architectures
and loss functions across our two parallel prior networks.
We empirically set the hyperparameter b in Equation (1) and
Equation (2) to 8, use a skill time horizon of 10 steps, and fix
K to 5 (consistent with CAT).

V. EXPERIMENTAL SETUP

We leverage SEAL to generate scenarios for two primary
purposes: providing data augmentation during closed-loop
training of reinforcement learning (RL) agent policies, and
providing a means of evaluating such agents’ capabilities.

A. Policy Training

For closed-loop training of an ego agent policy, we leverage
the WOMD-Normal set along with the MetaDrive simula-
tor [51], described in Section IV-C. Then, we follow the
curriculum training approach proposed by CAT [1], where a
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TABLE I: Ego performance on adversarially-perturbed (a, b, c) and unmodified, real-world (d, e) scenarios. WOMD-Normal
are WOMD [10] scenarios with basic interactive agents labeled by Waymo; WOMD-SafeShift-Hard refers to SafeShift-
mined [18] real scenarios in WOMD. Adversarially-perturbed scenarios use WOMD-Normal as base scenarios, in both training
and evaluation settings. Higher success rates and lower crash and out of road rates are better. Ego realism scores are shown
in (f), averaged over settings (a–e) using Wasserstein distance (WD); lower is better.

(a) WOMD-Normal, GOOSE-Gen [2]

Training Success Crash Out of Road

None (Replay) 0.59 (0.00) 0.41 (0.00) 0.00 (0.00)
No Adv 0.41 (0.06) 0.37 (0.02) 0.23 (0.04)
GOOSE 0.37 (0.07) 0.35 (0.09) 0.30 (0.17)
CAT 0.35 (0.03) 0.27 (0.02) 0.39 (0.06)
SEAL 0.44 (0.04) 0.27 (0.00) 0.27 (0.00)

(b) WOMD-Normal, CAT-Gen [1]

Training Success Crash Out of Road

None (Replay) 0.18 (0.00) 0.82 (0.00) 0.00 (0.00)
No Adv 0.32 (0.01) 0.46 (0.02) 0.22 (0.01)
GOOSE 0.25 (0.10) 0.47 (0.02) 0.31 (0.04)
CAT 0.32 (0.03) 0.32 (0.03) 0.40 (0.00)
SEAL 0.42 (0.02) 0.32 (0.04) 0.24 (0.02)

(c) WOMD-Normal, SEAL-Gen

Training Success Crash Out of Road

None (Replay) 0.32 (0.00) 0.68 (0.00) 0.00 (0.00)
No Adv 0.33 (0.03) 0.50 (0.05) 0.21 (0.04)
GOOSE 0.26 (0.08) 0.46 (0.00) 0.27 (0.06)
CAT 0.31 (0.00) 0.34 (0.04) 0.36 (0.02)
SEAL 0.38 (0.04) 0.36 (0.01) 0.25 (0.06)

(d) WOMD-Normal, Real Scenarios

Training Success Crash Out of Road

None (Replay) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00)
No Adv 0.48 (0.02) 0.21 (0.01) 0.28 (0.04)
GOOSE 0.44 (0.13) 0.23 (0.03) 0.34 (0.10)
CAT 0.50 (0.02) 0.15 (0.06) 0.36 (0.10)
SEAL 0.59 (0.01) 0.15 (0.00) 0.27 (0.01)

(e) WOMD-SafeShift-Hard, Real Scenarios

Training Success Crash Out of Road

None (Replay) 0.97 (0.00) 0.01 (0.00) 0.02 (0.00)
No Adv 0.28 (0.05) 0.38 (0.05) 0.33 (0.02)
GOOSE 0.19 (0.04) 0.42 (0.06) 0.36 (0.04)
CAT 0.24 (0.00) 0.38 (0.03) 0.37 (0.05)
SEAL 0.38 (0.02) 0.29 (0.02) 0.33 (0.04)

(f) Aggregate Realism

Training Yaw WD Acc WD Road WD

None (Replay) 0.014 0.269 0.004
No Adv 0.147 3.041 0.252
GOOSE 0.152 3.052 0.312
CAT 0.154 3.050 0.374
SEAL 0.146 3.074 0.270

TABLE II: Scenario generation quality; results are averaged over all tested ego models. WD measures are Wasserstein distances
over adversary behavior; a lower value indicates greater realism. Lower collision velocities (m/s) and head-on rates are better.
A lower ego Success is better, as this table assesses safety-critical effectiveness.

Eval Scenario Type Ego Success (↓) Realism WD (↓) Yaw WD (↓) Acc WD (↓) Road WD (↓) Coll. Vel. (↓) Head-On (↓) Head-On (Severe) (↓)

WOMD-Normal, Real Scenarios 60.0% 0.056 0.120 0.020 0.027 2.849 06.7% 04.2%
WOMD-SafeShift-Hard, Real Scenarios 41.3% 0.069 0.116 0.044 0.043 2.206 00.0% 00.0%

WOMD-Normal, GOOSE-Gen 43.0% 0.401 0.124 0.601 0.482 4.744 13.2% 11.7%
WOMD-Normal, CAT-Gen 29.6% 0.167 0.123 0.305 0.074 4.136 07.1% 05.9%
WOMD-Normal, SEAL-Gen 31.9% 0.108 0.121 0.157 0.049 2.950 09.2% 03.6%

random base scenario S from the train split is selected and has
a random chance of being perturbed; this perturbation chance
increases throughout the training process. Agents observe the
environment via simulated LiDAR returns and navigation in-
formation based on their original destination in X. Agents act
on the environment with normalized steering and acceleration
forces as a; the ego and adversarial agents follow either a
policy or a predefined trajectory, while all other agents follow
their original trajectory in X.

We utilize ReSkill [49] as our underlying RL algorithm, a
recent SOTA approach in hierarchical RL. We use our skill
space built in Section IV-B, utilizing the benign prior rather
than the adversarial one. The low-level action learned by the
ReSkill agent is a remediating ∆a adjustment to the action
decoded based on the current skill and state pair, a′, while the
high-level action selects the noise vector to be passed to the
prior. Thus, the action sent to the environment is a = a′+∆a.
Actions are performed at a 10Hz rate, and all agents are trained
for one million timesteps in total, empirically sufficient for
consistent policy convergence.

B. Evaluation Settings

Many previous works evaluate agent performance, in-
distribution, on a held-out subset of their own gener-
ated scenarios [1], [26], [28], [34]. For additional com-
prehensiveness, we propose to utilize a recent scenario
characterization approach, SafeShift [18], for identify-
ing real-world safety-relevant base scenarios, denoted as
WOMD-SafeShift-Hard. We start by identifying scenarios

containing interacting agents labeled by Waymo. We then
apply SafeShift’s hierarchical scoring to these agents and
select scenarios where the interacting agents have trajectory
scores in the top 20th percentile across WOMD, randomly
sampling 100 scenarios therein. The ego and adversary agents
are assigned to the interacting agents with the higher and lower
trajectory score, respectively.

We baseline SEAL against two recent SOTA safety crit-
ical scenario generation approaches, that can be utilized
in a closed-loop manner: CAT [1] and GOOSE [2]. CAT
heuristically chooses a trajectory from πgen to apply to the
adversarial agent; we use the same πgen function for both
CAT and SEAL, for fairness. GOOSE learns to iteratively
modify control points of a NURBS [54] curve fit to the original
adversary’s trajectory, observing the outcome of each roll-out.
We train GOOSE against the MetaDrive IDM agent using
the WOMD-Normal training set and GOOSE’s “deceleration”
task goal—induce a collision while maintaining kinematic
feasibility. For consistency, we limit the number of GOOSE
policy steps (i.e., observed roll-outs) to K = 5.

C. Metrics

Within MetaDrive, episodes are terminated when the ego
agent either arrives safely at its goal (Success), collides with
another agent (Crash), or violates an off-road constraint (i.e.,
crosses a road edge or yellow median; Out of Road). As
such, we report these corresponding rates as the key metrics
for ego performance, following prior work [1].
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Fig. 3: Ablation study on SEAL scenario generation training pipelines. Our full approach with learned objectives (Section IV-A)
and adversarial skill policies (Section IV-B) produces the strongest downstream agents, across all five evaluation settings.

(a) Ego Replay (b) GOOSE [2]-Trained

(c) CAT [1]-Trained (d) SEAL-Trained

Fig. 4: Qualitative examples of driving policies; the
blue ego is a learned agent while the red adversary
is fixed. (a) shows the original human trajectory from
WOMD-SafeShift-Hard, while (b), (c), and (d) show ego
behaviors learned in different pipelines.

For evaluating generated scenario quality, we examine the
induced ego Success rate, across all tested ego methods.
We derive a realism metric based on distributional measures,
following MixSim [14] and other prior work [15], [33]. In
particular, we utilize the Wasserstein distance (WD) over ad-
versarial “profiles”—normalized histograms constructed from
the adversary’s yaw rates, acceleration values, and out-of-road
rates. All WD values are computed via comparison to profiles
derived from the original Xadv in S, which we average to
compute an overall Realism meta-metric. We also report
relative collision velocities along the contact normal, as in
[25], along with head-on collision rates and severe head-on
rates (where severity is defined as collision velocity exceeding
5 m/s, thereby filtering out low-speed, glancing incidents).

VI. RESULTS

We report the median and interquartile range (IQR) over
four seeds, for greater statistical robustness. These statistical
summaries are computed independently over each metric,
so Success, Crash, and Out of Road may not sum
to 100%. We also evaluate a non-reactive ego replay pol-
icy (Replay), which rolls out the original Xego trajectory,

as well as a ReSkill [49] agent trained without any ad-
versarial scenario generation (No Adv). Note that due to
re-simulation limitations, Replay in WOMD-Normal and
WOMD-SafeShift-Hard may have a nonzero failure rate.
Downstream Performance. Our closed-loop training results
are summarized in Table I. SEAL-trained policies average a
21.5% increase in Success rate relative to the top baseline
in each setting, achieving a strong balance between Crash
and Out of Road rates. While a baseline-trained policy
may have slightly better performance on one failure type,
it is achieved by sacrificing performance against the other.
Compared to GOOSE and CAT, SEAL training yields more
realistic yaw and road compliance but less realistic accelera-
tion, indicating stronger braking and more disciplined in-lane
maneuvering to manage criticality. Despite high kinematic re-
alism, No Adv egos crash frequently due to lack of experience
in challenging scenarios and resulting poor reactivity.

We highlight qualitative examples of ego behavior in Fig-
ure 4, showcasing how different training regimes influence the
execution of the same benign skills, in a scenario drawn from
the WOMD-SafeShift-Hard set of real, safety-relevant sce-
narios. While all ego policies operate within the same offline-
learned skill space, their online adaptation differs across
training methods. The Replay ego depicts the ground-truth
human trajectory, which merges safely into the right lane. The
GOOSE-trained ego initiates the merge too early and fails to
recover in time, resulting in a collision. The CAT-trained ego
begins to merge later but hesitates under pressure, slows down,
and is rear-ended. In contrast, the SEAL-trained ego merges
with a sufficient gap while accommodating a close-following
tail vehicle, resulting in a smooth and safe maneuver. These
differences highlight how SEAL’s more realistic and nuanced
adversarial training scenarios better prepare ego policies to
navigate challenging interactions effectively.
Scenario Generation Quality. To directly assess scenario
generation quality, we aggregate metrics in Table II, averaged
over all ego methods. Although CAT scenarios induce a lower
ego Success rate and raw head-on rate than SEAL scenarios,
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(a) No Perturbation (b) GOOSE [2]-Gen

(c) CAT [1]-Gen (d) SEAL-Gen

Fig. 5: Qualitative examples of scenario perturbation; the
blue ego follows a fixed replay policy while the red ad-
versary is modified. (a) shows the original WOMD-Normal
scenario, while (b), (c), and (d) show perturbations generated
by GOOSE, CAT, and SEAL, respectively.

SEAL scenarios exhibit the highest Realism among scenario
generation approaches, a 35.3% improvement, contribut-
ing to SEAL-trained policies’ superior downstream perfor-
mance.Furthermore, SEAL’s collision velocities and severe
head-on rates are far lower than baseline approaches.

We also showcase qualitative examples of the tested sce-
nario generation approaches in Figure 5, using a fixed ego
Replay policy to isolate differences in adversary behavior.
CAT and GOOSE both produce aggressive trajectories that
lead to collisions: CAT stops and turns directly into the ego,
while GOOSE swerves across the lane and slows in the ego’s
path to force a t-bone. In contrast, the SEAL adversary exhibits
more nuanced behavior, slowing down to let the ego catch up,
moving away at the last moment to induce a near-miss, and
thus demonstrating interesting adversarial skill behavior.
Ablation Studies. To further investigate how different com-
ponents of SEAL affect downstream training, we perform
extensive ablation studies shown in Figure 3, as well as
comparing against CAT as it is a slightly stronger baseline
than GOOSE. We study the effect of our learned objective
function by comparing it to the heuristic, bounding box overlap
approach used by CAT (Learned Obj and Heuristic
Obj, respectively). Similarly, we compare our adversarial skill
policy (Adv Skill Prior) with a benign prior variant
(Benign Skill Prior) and a predefined trajectory fol-
lowing policy (TrajPred Adv). We also compare SEAL
against two additional ablations: one trained without curricu-
lum, and another without the initial non-reactive start. Our
full SEAL approach performs best across all settings; both
the learned objective function and adversarial skill policy are
essential, while the curriculum and non-reactive start further
improve performance.

VII. CONCLUSION

As autonomous driving (AD) systems advance, ensuring
safety remains essential. While recent safety-critical sce-
nario generation techniques show promise, they often lack
the realism, reactivity, and nuance needed to provide strong
training signals for closed-loop agents. We thus introduced
Skill-Enabled Adversary Learning (SEAL) as a perturbation-
based safety-critical scenario generation approach, combining

a learned objective function and an adversarial skill policy. In
all test settings—across both real-world challenging scenarios
and generated scenarios by SEAL and other SOTA methods—
SEAL-trained policies achieved significantly higher success
rates, with a more than 20% relative increase. Upon deeper
analysis, SEAL-generated scenarios contain less aggressive but
more realistic adversaries, helping to explain the observed ego
agent improvements. We argue that realism metrics, down-
stream task utility, and out-of-distribution evaluation settings
are vital in assessing adversarially-perturbed scenarios.

While SEAL is quite effective, further improvements are
still possible. Incorporating finer-grained metrics into the
objective function could enable more adaptive and control-
lable generation beyond safety criticality alone. Additionally,
enhancing realism metrics to reflect human decision-making
at the skill-level could provide deeper insights into scenario
quality. We encourage future work to explore these topics.
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